SpeedChecker CPE Wi-fi Performance Ranking

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail

SpeedChecker analysed 300,000 speed test results to produce a Wi-Fi performance ranking of CPE (routers) around the World. Our results show that the choice of router has an important impact on the perceived speed of the Internet even for users of the fastest devices and the with the strongest signals.

 

In this white paper we explain how our methodology eliminates other causes of slow speeds and presents a ranking table of routers for the top 20 manufactures. We also show the cost of the routers to identify the routers that offer the best value for money. The conclusion of our study show that there are some clear differences between manufacturers and between the models that each provide.

 

Ranking Methodology

The purpose of this white paper is to rank Customer Premises Equipment (routers) in order of Wi-Fi throughput, to help consumers and providers to diagnose slow internet connections. There is often disagreement between the consumer and the provider regarding where the fault lies for slower than expected Internet connections. There are many causes for a slow internet and this white paper explores the impact of the CPE (router) on the final speed perceived by the consumer.

 

In this section we explain the methodology used to ensure that we are able to confidently rank routers to identify the fast and slow routers. This will help to diagnose poor speeds because the data will allow the consumer or provider to know what to expect from the routers being used. The methodology is designed to allow for a fair comparison between routers.

 

This white paper is based on 300,000 speed results collected between 1st April and 10th June 2019.

 

We analysed these 300K results and filtered them to eliminate other factors that could be reducing the speed of the CPE. We eliminated any speed tests that failed our rigorous accuracy check, any tests that used devices not capable of the fastest speeds and any tests that had a poor signal quality. We also disregarded very strong signals that may not have been representative of the average user. Finally, we disregarded any model of testing device or router that had a small data sample. From the 300K we found 46K that met our criteria.

Because of the filtering, we have reduced the CPE models to the most popular ones used by the users. A more comprehensive study ranking a wider set of CPE models will be published in the future.

Countries

Our data set includes results from over 100 countries however the vast majority of results are from  France, the United Kingdom and the United States.

 

Distribution of results by country

Client Devices

During the time that SpeedChecker collected results there were over 600 different client device models used (mobile phones & tablets). To ensure that the devices themselves were not the cause of a slow connection we removed results from slow devices, those with insufficient results and those that were not using the 2.4 GHz band.

 

We removed devices that had a maximum link speed of less than 100 Mb/s and an average throughput of less than 30 Mb/s.

 

There were 75 devices that met our criteria to be included in the analysis of the CPEs (routers). These are all Android devices because data from iOS devices was not available for this study. SpeedChecker plan to include iOS devices in future studies.

 

The most popular fast devices in order of results per device:

 

The most popular fast devices in order of results per device

 

Samsung are clearly the most popular device but how do they compare in terms of throughput? The following table shows the average throughput in Mb/s for the top devices. Samsung have 5 of the top 10 but the fastest in our sample was the LGE V30.

 

Mobile devices in order of throughput speed

CPE (Routers)

There were over 400 routers in our sample of 300,000. After eliminating the results from the devices as previously described there still remained over 360. However, for many of these routers there were too few samples to be statistically sound. Removing these left 78 routers that we could analyse with confidence.

Methodology:

Wi-Fi Throughput Test

The Wi-Fi Throughput Test shows the average maximum measured transfer speed between the device and the CPE (router) using the UDP protocol. Wi-Fi throughput will normally be higher than or equal to the Internet speed.

Internet Download Test

The Internet Download Test is the actual Internet speed experienced on the device during the SpeedChecker speed test using TCP protocol. Our test uses sophisticated procedures to ensure that the result is as accurate as possible.

How SpeedChecker calculate a slow Wi-Fi connection

In order to determine if a particular result shows that the CPE (router) was responsible for a slow internet experience, SpeedChecker compared the measured Wi-Fi throughput with the Internet Speed test. SpeedChecker looked at the Internet Speed as a % of the Wi-Fi Throughput. Any result that shows an Internet speed greater than 80% of the Wi-Fi Throughput speed indicates a slow CPE (router).

 

The following table assumes that a customer is being provided with a 100 Mb/s Internet connection and compares how a slow CPE impacts on the speed they actually experience. If the throughput is slower than the Internet being provided to the premises then the actual speed being experienced is limited to that throughput speed.

 

In the worst case we see that, although there is 100 Mb/s coming into the premises, the Wi-Fi throughput of the CPE is only 50 Mb/s. A better throughput of 150 Mb/s gives the customer the full 100 Mb/s that is being provided with a ratio of 67%. For our analysis we consider any speed test result that has a throughput speed between 80-100% of the measured Internet speed to be slow. In our ranking tables we include the % of slow results for comparison.

 

Slow results lookup table

Drawbacks of our methodology:

Our results rely on the CPE (router) having UPnP enabled on the router. Although many routers have it turned on by default there are still a significant number of popular routers that will not appear in our list because UPnP is disabled by default on them. Some users may enable it on these but if there are not enough results to be statistically significant they will not appear in our tables.

 

Our methodology mitigates against the impact of the wifi setup such as poor Wi-Fi signal and slow/old devices by only including results with strong signals and those results from devices capable of faster speeds. We also mitigate against local impacts on the results during the test itself by eliminating poor results.

 

The steps that we have taken to ensure accurate ranking of CPEs means that the 300K raw results have been reduced to 50K high quality results to ensure a fair comparison.

How SpeedChecker Filter the Data to Produce Meaningful Results

The purpose of this report is to provide an analysis of the speed results to show the best routers in terms of Wi-Fi Throughput. This will allow comparison of routers (CPEs) and help to identify if the router is causing a poor internet performance.

 

It was important for us to ensure that we only used speed results that provide information that was reliable, significant and relevant to most users. To do this we filtered our results based on :

  • Reliability
  • Device Speeds
  • Router popularity
  • Wi-Fi Signal
  • Wi-Fi Type
  • Number of results per router and device

Reliability

SpeedChecker take great care to ensure that any speed test result that we use is reliable and accurate. The results that are eliminated include incomplete tests, tests with too few samples and tests that take too long to complete. This can be caused by local interference such as the user moving during the test, the user cancelling before completion and interference during the test by other devices or other apps.

Device Speed

Because we are interested in the performance of the CPE we have included only phones and devices that are capable of the faster speeds. Otherwise, it would not be clear if it was the router or the device that was causing the slowness.

 

We used the top 75 devices from over 600 devices in the raw data. These all had maximum link speeds of at least 100 Mb/s and we had sufficient results from each device to be statistically significant. To qualify for this list a device was also required to have a minimum of 250 results.

 

The average Wi-Fi Throughput for these devices ranged from 30 to over 100 Mb/s.

Router Popularity

We list the most popular routers based on the number of data samples for each router and their popularity in Europe. It should be noted that some of these routers are offered as ISP brands. A router needs to have sufficient results to allow for statistically sound analysis.

Wi-Fi Signal

A weak Wi-Fi signal will also produce slow results and would cause a router to be mis-reported as being slow. We looked at the number of results in each band of signal strength and, as seen in the chart, we saw that most of them were between -40 and -70 dBm. We filtered out any results worse than -70 dBm. We also filtered out strong signals (above -40dBm) to ensure that our analysis focuses on the more challenging wireless conditions where users typically struggle with wi-fi, and ideal conditions where most of the CPEs are working well.

 

Distribution of Results by Signal Strength (dBm)
Distribution of Results by Signal Strength (dBm)

 

Wi-Fi Type (2.4 GHz or 5 GHz)

Our analysis restricts results to those using the 2.4 GHz band to make the comparison equal across all routers. We chose 2.4 Ghz because our results show that there are twice as many users of 2.4 GHz than 5 GHz meaning that most users will be using the 2.4 GHz band. We also see that there are 50% more slow results for 2.4 GHz compared to 5 GHz.

Pie chart showing distribution of 2.4 Ghz and 5 GHz bands
Distribution of 2.4 Ghz and 5 GHz bands
Pie charts showing percentage of slow results for 2.4 and 5 Ghz
Percentage of slow results for 2.4 and 5 Ghz

Number of results per router and device

Another filter that we apply to our results is to ensure a minimum number of results per device and per router. The restriction on the device (phone / tablet) was used in identifying the devices to be used to filter the CPE (router) results. These results were then further reduced if a router had insufficient measurements from these faster devices.

CPE Manufacturer Ranking

For the top 20 manufacturers the following table ranks the best CPE from each manufacturer in order of average Wi-Fi Throughput. We also give the average Internet Download speeds as measured by our speed test. The Slow % indicates the % of results for that router that were defined as slow by the metric discussed previously. We provide the cost where available to allow for a Value For Money comparison.

 

We provide further tables that include their other top-performing equipment in the section that follows.

 


Ranking table of best models for each CPE manufacturer

Prices are given for CPEs that were available to buy at the time of writing and are in USD.

 

The Internet speed as measured by our Speed Test is provided to give an indication of the speeds expected by the consumer with most speeds between 20 and 50 Mb/s. A couple are much lower than that, particularly TP-Link Archer_C5. This should not be interpreted as a fault of the router especially in this instance where the slow % is only 2%. i.e. the router is not the cause of the slow internet speed. Most likely the slow internet speeds are linked to the actual router being popular in countries / ISPs which offer internet packages with low speeds.

Vendor-specific CPE Ranking Tables

The previous table ranks all manufacturers by their best-performing CPE (routers). In the following tables we take the top 10 manufacturers and include the overall ranking position.

 

There are no tables for Compal Broadband or Sercomm because they each have only one CPE in our results.

Arris CPE RankingArris CPE Ranking

AVM Berlin CPE RankingAVM CPE Ranking

BT CPE RankingBT CPE Ranking

LinkSys CPE RankingLinkSys CPE Ranking

Netgear CPE RankingNetgear CPE Ranking

Sagemcom CPE RankingSagemcom CPE Ranking

TP-Link CPE RankingTP-Link CPE Ranking

ZyXel CPE RankingZyXel CPE Ranking

Conclusion

The results of our study show that there are some clear differences between manufacturers and between the models that each provide. Most manufacturers provide one or two routers that are significantly better than the rest, reflecting improvement in technology. For example, BT is releasing new versions of its models and we can see clearly from our data the wi-fi throughput increases with every version and showing it is worthwhile upgrading.

 

Although more connections are being made using the 5 GHz band than previous years, 2.4 GHz connections are still used twice as often. It is interesting to see that the percentage of slow connections using 2.4 GHz (20%) is 50% larger than for 5 GHz (13%). We conclude that most customers suffering with slow connections are still using 2.4 GHz and that is why we concentrated on this band. The reasons for this include the CPE (router) not having a 5 GHz band, the user not switching to 5 GHz either because of lack of knowledge or because they get better results on 2.4 GHz (because of distance, walls etc).

 

Routers from BT, Sercomm, Zyxel and Linksys topped the ranking in terms of Wi-Fi throughput, each being 10% faster than their rivals. The Linksys EA7500 and ZyXel EMG2926 were particularly impressive because their slow % was 1% and 6% respectively. Sercomm’s top router (the Livebox) had a faster throughput but a disappointing 19% slow %. If reliable performance is important then choose the Zyxel or Linksys router but if value for money is important then choose BT Home Hub 6 or Sercomm Livebox, each costing less than half of the others. The AVM Berlin Fritz!Box 7490 at $270 does not offer the best VFM, however, their second router (7430) at $110 is a better buy.

 

Only one manufacturer in the top 10 had a slow % below the average: the Arris TG2492LG-85 at a disappointing 40%. With a throughput of 87 Mb/s it performed well but if reliability is important then choosing their second fastest (TG862G) gives a respectable 73 Mb/s but only 4 % slow %.

 

Most manufacturers have some routers that have a wide range of slow %. BT is unusual in that the 6 routers in their table range between 13% and 20% with the throughput correlating with the slow % i.e. the faster the throughput the small the slow %. Netgear in contrast has a flagship router (WNDR4500v2) with great throughput and negligible slowness but 6 others that perform poorly in contrast. Linksys have two great routers and two not so great.

 

Wy care abut Wi-Fi performance?

How can SpeedChecker help?

 

Wi-Fi Measurement data

 

 

Contact Us

For more detailed information please contact us:

email: [email protected]
skype: jezowicz
phone: +44 203 286 3573
Contact Us Here

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail

March 2019 Middle East Speed Ranking Report

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail

Summary

In this analysis of speed test results taken in countries in the Middle East during February 2019 we compare download speeds between countries, between MNOs & ISPs within each country and also compare how performance varies across different subsidiaries of the major Telecom Groups.

Key Insights

  • Middle East average download speed: 7.3 Mb/s

  • Turkey, Qatar, Bahrain and Jordan have above average download speeds

  • Egypt and Kuwait have the slowest download speeds

  • Vodafone in Qatar, Orange in Jordan and Vodafone Turkey are the fastest amongst MNOs & ISPs with download speeds over 10 Mb/s

  • Inconsistent CDN peering impacts user experience

Country Ranking

Regional average download speed is 7.3 Mb/s.

Turkey (10.7 Mb/s), Qatar (9.0 Mb/s), Bahrain (8.4 Mb/s) and Jordan (8.1 Mb/s) top the chart with above Middle East average download speeds. Egypt (4.4 Mb/s) and Kuwait (5.7 Mb/s) have the poorest performance in our tests. These speeds are represented in the following chart.

compare_download_do

How Telecom Groups Perform in Different Countries

There are a number of international MNOs & ISPs that offer services in more than one Middle East country:

Telecom Group Number of
Countries
Countries

Batelco

2

Bahrain and Jordan

Etisalat

3

Egypt, Saudi Arabia and United Arab Emirates

Link.Net

2

Egypt and Jordan

Ooredoo

3

Kuwait, Oman and Qatar

Orange

2

Egypt and Jordan

STC / Viva

3

Bahrain, Kuwait and Saudi Arabia

Vodafone

3

Egypt, Qatar and Turkey

Zain

4

Bahrain, Jordan, Kuwait and Saudi Arabia

Our next chart superimposes the average speed for each country with the speeds for each Telecom Group so that we can see which Groups produce above or below average in each country that they operate in. Each country is given a unique colour in the following chart to allow a visual comparison of speeds for different Telecom Groups in each country.

Most Telecom Groups outperform the average in each country with the following exceptions:

  • Batelco in Jordan

  • Link.net in Jordan and Egypt

  • Ooredoo in Qatar

  • Vodafone in Turkey

  • Zain in Saudi Arabia, Bahrain and Kuwait

provider_groups_colours_circles

Top MNOs & ISPs in each Country

In this section we look at how the most popular MNOs & ISPs perform in each country. The charts are in order of the fastest available download speeds with a consistent scale of up to 16 Mb/s to make comparison easier.

turkey16
qatar16
jordan16
bahrain16
egypt16
oman16
uae16
sa16
kuwait16

SpeedChecker Measurement Methodology

Data Collection

SpeedChecker collected data in all countries during the same period in February 2019 to ensure a fair comparison. We gathered many data points using the crowd sourced data samples collected in the field on mobile devices. During the time the data collection took place, SpeedChecker received over 60,000 data samples and the included statistics and analysis are based on this dataset.

It was important for us to not only measure the real speeds as experienced by the user but also to ensure that we measured to the same point to ensure a fair comparison. For this we included only measurements to one server in Amsterdam. Read the following section “Choice of measurement server” for more about this method.

Choice of measurement server

Every measurement methodology differs in the selection of measured server infrastructure. Some methodologies focus on on-net servers hosted in telecom premises and others focus off-net. SpeedChecker believes off-net servers’ measurements are representing real user experience better than on-net as most of the content accessible by end users lies off-net. Most of the content these days is hosted on CDN networks and the best way to measure most relevant download metrics is to choose popular CDN networks. However, as we learn in this report, not all ISPs and MNOs connect to CDNs directly (or peer) and that has major implications on performance.

One of the main advantages of CDN peering is to improve connection time and download speeds by bringing the content closer to the end user. Before we could analyse the speed results, we considered how widespread peering was and discovered that there was a variation between 0 and 100% use of local servers.

server_use_chart

The chart above shows the percentage of results from each country that are routed via local Middle East Servers, Europe or Asia. Bahrain, Qatar and Oman are all above 50% Middle East server use with Bahrain at 100%. United Arab Emirates and Egypt have a very low use of local servers. In our case we have used the most popular CDN – Cloudflare.

Speeds achieved to local servers were, on average, around 30% faster than speeds routed via European servers but this is not available to the majority of users. Because of the unbalanced availability of this CDN peering we chose to limit our analysis to results from one particular server based in Amsterdam, Europe.


  • No country will have an unfair advantage as would be the case if local servers were used

  • The majority of content is still hosted in Europe which means the download speeds reflect actual usage for most of the content downloaded by the end user

It is acknowledged that the operators in some countries that are peering with CDNs will achieve better results than those shown in this report.

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail

Analysis of Fibre and 4G Deployment in Riyadh

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail

This is a report on the state of Fibre and 4G deployment in Riyadh based on data points collected by Speedchecker in September 2018. The report discusses the state of Fibre and Mobile coverage (the extent of coverage and the quality of service) and the Speedchecker Measurement Method. The conclusion shows how Riyadh is placed to take advantage of future improvements to networks.

Current Network Coverage in Riyadh

Summary of Network Coverage

The three main Internet providers in Riyadh are STC, Mobily and Zain. Only STC provide services over 4G, Fibre AND Copper. Mobily offer 4G and Fibre and Zain provide 4G but not Fibre or Copper. Riyadh has excellent 4G coverage and Fibre is well established in the centre of the city and plans are well underway to extend the coverage to the main city areas. Fibre beyond the main city areas is planned but not currently in progress.

coverage_summary

Fibre Coverage

Fibre is widely available across Riyadh particularly in and close to the centre. The map shown below shows that coverage is poor in the South-West of the city and in the rural areas surrounding the city.

Fibre is provided by STC and Mobily with Mobily exclusively covering the South-West and ITC the North-East. Other existing areas are covered jointly by STC and Mobily.

The In Progress areas (yellow on the map) are either STC or ITC with some coverage being provided by Dawiyat.

Zain has no fibre coverage in Riyadh as at October 2018.

riyadh_ftth_coverage

Fibre To The Home (FTTH) Coverage in Riyadh (January 2018)
Source: MCIT (https://www.mcit.gov.sa/en/wbsira-map)

4G Coverage

Riyadh has excellent 4G coverage with 4G being available in all urban districts and along the length of the main roads going into and out of the city.

Speedchecker Measurement Method

Speedchecker uses the billions of data points collected through its passive and active measurement technologies worldwide to provide insights to our customers. This is used by businesses to improve their service and by research establishments to provide invaluable information.

Each data point consists of many KPIs including speed, latency, location, connection type, device info. Our results focus on speed and latency as experienced on the device to provide insightful information on Quality of Service. More detail about the Speedchecker Measurement Method.

This data is then integrated into our customizable map-based dashboards for geospatial analysis.

STC Fibre Coverage

Riyadh has an ongoing plan to implement fibre broadband across the city. Our results clearly show a correlation between the speeds achieved in districts that have fibre and those that do not.

We analysed the fibre results from STC to see if they correlated with the rollout of fibre across Riyadh. Our results on the left show high-speed results in Red / dark orange and slower results in yellow / light orange. These can be compared with the green areas from the MICT rollout plan where fibre is already available and the yellow areas where it is in process. The blue areas show areas that are planned but not yet in process and it is in these areas that the speeds are low.

riyadh_ftth

We are still analysing the results from Mobily fibre and will publish when the analysis is complete.

State of Riyadh Mobile Networks

Speed result data points collected from Riyadh in September 2018 were analysed and allowed the top 3 mobile providers to be compared.

By adding the download speed data to our districts map of Riyadh we can clearly see that STC provided the fastest download speeds followed by Mobily and finally Zain. The maps also show a consistent difference in speeds from district to district. Districts that are the fastest or slowest for one provider tend to be the fastest or slowest for the others even though their actual speeds may vary.

riyadh_mobile_speeds

map_scale_1

 

The following table illustrates the fastest and slowest districts in Riyadh based on the average mobile download speeds. The speeds highlighted in green represent the 5 fastest speeds by provider and the red speeds are the 5 slowest by provider. It is clear from this table and the maps above that STC are getting the fastest mobile speed test results and Zain the slowest.

 

riyadh_districts

Conclusion

Riyadh has excellent 4G coverage provided by STC, Mobily, Zain and other mobile operators. The MCIT (Ministry of Communications and Information Technology) plan for rolling out fibre across Riyadh is well-established and their progress map is accurate.

All 3 companies are providing a good service with STC having more coverage and faster speeds. Our report has highlighted some areas of Riyadh that could need some improvement in service and others that are doing very well. This may inform future plans for infrastructure changes.

This is a good foundation that should ensure Riyadh will be well-placed to continue to take advantage of improvements in technology such as 5G. This will ensure that businesses and residential users can continue to enjoy all the benefits that these advances bring.

logo-smallInterested in more detailed information on the Internet quality and coverage in Middle East and beyond?

Contact us for more information

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail

What happens to mobile network on the biggest event of the year? Not what you would expect!

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail

Hajj 2018: 2 Million visitors over 6 days

Between 19th and 24th August 2018 over 2 million visitors arrived in Mecca for Hajj. This annual pilgrimage to the holiest city for Muslims is associated with the Prophet Mohammed who is said to have lead his followers there before consecrating it to Allah. It is considered a religious duty for all adult worshippers who are able to undertake this pilgrimage at least once in their lives. This number of visitors more than doubles the usual 1.5 million population of Mecca causing almost unimaginable challenges to the city’s infrastructure. In this article we discuss just one of these challenges : mobile Internet speed and access. It is hard to imagine how the infrastructure could cope with the huge increase in demand.

Hajj 2017: Review

During Hajj in 2017 mobile data demand nearly doubled compared to 2016. Although an increase of 60-70% was anticipated the 100% jump was a surprise. This was attributed to the increase in popularity of YouTube and Snapchat. Despite the increased demand, 99% of calls were successful and 23,000 Terabytes of data were consumed. According to the UN Sustainable Development Goals report published in ITU News from September 2017 this was thanks to the deployment of 3700 ICT specialists and 13,000 2G, 3G and 4G mobile base stations in all Hajj cities. The report does not specify which Telcos were involved. Source: ITU News.

Hajj 2018: The Kingdom’s Initiative to Maximise Mobile Communication During Hajj

King Salman bin Abdulaziz and the Crown Prince Mohammed bin Salman issued a directive “to do everything possible to make it easy for pilgrims to perform the rituals of Hajj”. The initiative’s objective is to allow pilgrims to communicate with their families and enable them to access the digital services available in the Smart Hajj initiative, so that they can enhance their experience and allow them to take advantage of enhanced communication services, as per a release issued by the authorities.

In particular, a number of packages provided by some of the main mobile operators offered their customers 1 Gb for 48 hours. Source: https://www.tahawultech.com

The Challenges

The challenge of providing adequate mobile services during a large event is not simply trying to maintain the current service levels. It is also about balancing the needs of the visitors with key service areas that are essential during the event. Consideration must be given to protecting the critical infrastructure of the region to enable it to respond to serious incidents. One way this can be achieved is to ensure there is resilience and redundancy built in to the infrastructure. Consultation with interested parties is essential to ensure that the steps agreed will meet the essential needs of all concerned. A thorough risk and threat assessment will identify where the effort is required.

It is a balance between being good hosts to the visitors and ensuring a continuity of services for the locals. Short term measures and agreements will be a great help in achieving this balance and the generous provision of 1Gb over 48 hours in Mecca is one such example. This may be the headline initiative but it is clear that much more has been done in many other areas to ensure a successful Hajj.

Telco Infrastructure in Mecca

Mecca has an excellent 4G network covered by a number of major operators. Building on the improvements made for Hajj 2017 this has allowed them to improve the average download speed by 83% between 2017 and 2018. They will continue to improve as they roll out 5G and it is expected that this will be further improved as part of Saudi Vision 2030.

Saudi Telecom Company (STC) has been at the forefront of this with investment in FDD and TDD LTE spectrum assets. The rewards of this investment can be seen in our results which show STC outperform the other providers in our research.

Zain have also been investing in technologies that allow them to extract the best out of their infrastructure. They are also preparing for 5G rollout.

Mobily has partnered with Ericsson to deliver 4×4 MIMO and as with STC and Zain they are preparing a 5G rollout.

As the Telcos continue to improve installed and available capacity so the Internet speeds can be expected to increase.

Speedchecker measurement methodology

Ahead of Hajj, Speedchecker started data collection to gather as many data points in Mecca as possible before / during / after the event. The crowd sourced data samples were collected in the field using mobile phones carried by the pilgrims to Mecca. Measurements were run on mobile networks of the top providers using Android and iOS devices. The measurements were made towards local CDN PoP based in Riyadh. The recorded results are a good proxy for the internet quality users were experiencing in Mecca on their mobile devices. During the 15 days the data collection took place, Speedchecker received over 100,000 data samples and the included stats and analysis are based on this dataset.

Hajj 2018: The Results

The results show that not only did Mecca cope with the extra 2 million visitors they exceeded all expectations. It would be reasonable to expect that speeds would decline by up to 50% during Hajj when compared to the week before or the days after. However, the speed test result reveal that the steps taken in Mecca allowed visitors and locals to enjoy an increase in speed that was continued throughout the following days. Our analysis stops after the 26th August.

The chart shown below shows the median (middle value) of Mobily Mobile, Zain Mobile, STC Mobile and STC Fixed broadband. We only have STC data from 21st August (Hajj started on 19th) and we have separated the STC Mobile tests from the STC Fixed Broadband tests. There is an unexplained drop in speed for STC mobile on the 23rd August. We have included the STC Fixed Broadband to show that the problem only affected STC Mobile customers. Despite this 50% drop from STC the overall trend during Hajj was a gradual increase in download speed.

STC mobile download speeds are more than 50% faster than either Mobily or Zain and this shows that investment in infrastructure yields positive results and benefits to the end user.

mecca_by_day

The following graph compares how the average daily median speeds of each of the providers changed before, during and after Hajj. The average shows a remarkable increase throughout Hajj and into the following days. Zain’s speeds after Hajj are faster than those from before while Mobily has returned to before Hajj speeds.

mecca_by_provider

Whatever improvements and changes were made to the Telco infrastructure during Mecca the results of the download speeds show that it was a huge success.

Internet speed map of Mecca

Using mobile device GPS data we were able to map internet speeds in Mecca to a high geographic precision. Collected data were normalized and color-coded so that the fastest areas are in red and slowest in dark blue. The outskirts of Mecca which are not colored are out of scope for this study.

 

Mobily

As can be observed the fastest areas for Mobily are not in the center which can be attributed to increased demand from higher concentration of people.

mobily_heatmap

 

Zain

The Zain speed map is slightly darker and corresponds with slightly slower internet speeds than Mobily. Yet the centre is faring quite well in comparison with Mobily.

zain_heatmap

 

STC

The STC internet speed map looks comparatively much better than Mobily and Zain and proves that internet speeds are well distributed across whole of Mecca.

stc_heatmap

The internet quality around Great Mosque is better illustrated using more detailed heat map where you can see individual measurements (which are also color coded like on previous maps). The area around the mosque has very good speeds also for Zain, which indicates Zain did not underestimate the capacity needed in the center.

Mobily Zain
 mobily_circle  zain_circle

Conclusion

The 2 million pilgrims arriving in Mecca in 2018 provided a huge challenge to ensure that the quality of service that visitors and locals expect can be delivered and maintained. We have seen how the demand doubled between 2016 and 2017 and this increase was sure to continue in 2018.

The Saudi Arabia Initiative and the efforts and investments of the major mobile operators has ensured that the quality of the service has not only be sustained but improved. This improvement has continued at least for the few days after Hajj (we have no data beyond this). We don’t know how much of the improvement will be permanent but, with a similar commitment in 2019, we can be confident that Hajj will continue to be a Telco success.

Looking further forward we can see that the Saudi Vision 2030 has ambitious plans that should sustain this for the foreseeable future.

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail

Are ISPs still throttling Netflix?

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail



In the recent past we have seen a massive development of online streaming services, where Netflix is one of the leading brands in this new market. Netflix has built its own CDN (Netflix Open Connect) to support its worldwide expansion. This resulted in a rapid growth of bandwidth consumption from a considerable number of users, intensifying year after year together with Netflix’s popularity. Netflix has undergone a massive structural transformation in the way it delivers content. Parting from a monolithic application design with some external CDN support to building their own CDN around the world. Currently Netflix Open Connect has 233 server locations in all 6 continents. Their endpoints are primarily located among IXPs and within some ISPs as well. A model which reminds us of Google Global Cache, by installing cachés close to the last mile to deliver specific services.

ISPs have reacted differently across the globe, resulting in some heated discussions about traffic shaping, throttling and service differentiation from ISPs, which rose considerable criticism from defenders of net neutrality and consumers alike. Two years after our previous insight into this topic, we decided to find out what is happening today, if any ISPs are showing signs of throttling Netflix. We found that the situation has improved noticeably.

We setup an experiment which runs from thousands of Speedchecker probes around the world Netflix’s SpeedTest (fast.com) and right after that our own SpeedTest using Akamai endpoints. We compared the results of both tests using our SpeedTest with Akamai as reference and found out which ISPs show noticeable differences when connecting to Netflix. Due to Netflix’s high bandwith consumption and rapidly growing popularity, adapting to such changes might pose a challenge for some ISPs.

After running the experiment for 24 hours, we found that the performance differences between Fast.com and our reference endpoints in Akamai are equivalent, which fortunately tells us that the general rule seems to be not to throttle Netflix.

peak vs offpeak_

We can also observe that the situation still changes notably between countries, with Italy showing the worst performance among the countries where our measurements ran.

Countries-peakVsOffpeak

In the following table, we can see the ISPs in which we measured the top 35 highest median speeds.



After investigating ISPs in the USA only, we we able to rank their top 10 providers as follows comparing off-peak and peak traffic hours.

us-peak2 us-offpeak2

We couldn’t detect further major ISPs showing signs of Netflix throttling in the countries we studied. In the cases of CenturyLink, Charter Communications and possibly Time Warner Cable, we can observe a clear disadvantage of Netflix during peak hours.

In conclusion, we have seen the situation of Netflix evolve in positive terms for the consumer. We can see from our test results that the global tendency is to respect net neutrality. There are still ISPs worldwide which haven’t joined Netflix OpenConnect CDN yet and therefore they cannot profit from its traffic delivery benefits. Others simply slow down altogether during peak hours which reveals difficulties at coping with high traffic demand. So far this year, Netflix global launch seems to have gone peacefully and without any major incidents. The market has made its share of pressure to the industry, pushing them to develop high performance infrastructure for the end consumer, while clearing the path for other applications high in bandwidth consumption to enter the market with lower technical and legal barriers.

Fill out my online form.


Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail

Speedchecker @ IETF 96

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail



This year the IETF meeting in its 96th edition took place in the vibrating city of Berlin. We didn’t want to miss out on this important gathering and decided to contribute to one of their workshops on network measurement: nmrg.


We presented a study that was made in cooperation with LACNIC Labs, where the Latin America and Caribbean region was measured using Speedchecker ProbeAPI during one year, making possible to map the region in terms of connectivity. This allowed us to identify clusters of countries that were better connected between them than to the rest of the region. A definition for connectivity had to be defined in such a way that permitted to draw interesting and useful conclusions about the situation in the LAC region.


Screen Shot 2016-07-21 at 12.10.13


The video of our presentation at IETF96 can be found here, our presentation starts at minute 43:00. The original blog post by Agustín Formoso from LACNIC Labs can be found here.

The study was received with high interest by both the chairs and audience at the workshop, spawning interesting discussions during and after the session. We are happy to be able to participate and discuss our measurement experiences with the IETF/IRTF community. We collected valuable suggestions and comments which will surely help us point not only our measurement techniques in the right direction, but also develop our products and regional presence in a way that favors coverage and scientific precision.

The IETF 96 meeting has been a very nice experience, allowing us to get in touch and meet personally important actors of this worldwide community as well as keeping ourselves up to date with relevant decisions, norms and standards that are currently being discussed.

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail

Announcing new Feature: Page-Load Waterfall Analysis

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail

Here at Speedchecker, we are aware of our customer’s requirements and we strive hard to build our products not only robustly and precisely, but also expand on features which will help everybody to diagnose their sites performance in greater detail, while at the same time , retaining that ease of use and clarity our customers love. Today we proudly announce the introduction of a new feature in CloudPerf: a detailed view of all your measurements. This feature is especially useful for frontend developers, who need to examine if the webpage loading time is not impacted too much by including slow external resources such as 3rd party tracking scripts or assets.

 

Inside your Benchmark’s results page, just move the mouse pointer along the graph  and click once in the position you would like to take a deeper look. The pop-up windows will stay after your click and you can go inside the detailed view by clicking “Show Detail”.

Screen Shot 2016-06-22 at 16.57.44

In this view you can see a panel on the left side, where you can choose the benchmark where you would like to take a closer look, the country of the measurements, destination website and the time range for which the results will be shown.

Screen Shot 2016-06-22 at 17.26.12
On the top you can see a timeline where after selecting the time-range you can choose with precision the time of the day you want to take a look into. Directly underneath the list of measurements made at that time will appear, showing the details of every single one of them.
Screen Shot 2016-06-22 at 17.26.22

 

If you are running a Page-Load Test, be sure to check the box “Collect resource timing data” in its configuration before running it. If you did so, using this new feature will be enable you to take a look using a very cool and useful Waterfall Chart, which will show you the loading times of every resource of the site you are measuring, for every single measurement in the time-range you selected. This way you can follow the behaviour of your services in detail over time.
waterfall
I hope you enjoy this new addition to CloudPerf and overall we expect it helps you to gain a greater insight into monitoring your resources.

Sign up now!

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail

Cloud vs CDN… Are CDNs always an improvement?

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail

During the last years we have witnessed an explosive evolution in how the Internet is structured. Although traditional hosting and content delivery is still the norm in most cases, its basic function has been enhanced by CDNs and the advantages of cloud computing when we need to optimize our service’s presence.


On one hand, CDNs have built themselves a reputation of speed, power, “freedom”, space, air…which reflects on their market names as well: Fastly, Highwinds, CloudFlare, Skypark, Cachefly, etc. You get the idea. In many cases the technical results do reflect their marketing images, in most situations adding a CDN will probably benefit your site… but is it always like that?


On the other hand we have Cloud Computing services have improved and matured a great deal, while at the same time can offer either their own CDN connectivity or simply it’s easy to hook one up. We have found that, even without CDNs some cloud services work at CDN-like speeds and it seems that adding one won’t bring noticeable speed boosts.


We take the case of DigitalOcean as cloud provider. Famed by their approach as a simple and clean environment and low costs, we could observe remarkable speeds in the UK using our tool CloudPerf.


In this graph we can observe how DigitalOcean compares to Google and Amazon (without CDN) in a single 1MB object download.

DOvsGoogvsAma-httpget UK

We set-up a simple web-page for comparing the time it takes to load a whole page.

DOvsGoogvsAmaz pageload
We can already observe a clear difference to both giants Google and Amazon. Both offer their own CDNs which will speed up their service, even locally. But why not get a cheaper and already fast solution?


Especially for local audiences, like this case in the UK, there could lie a very cost-effective solution for delivering low-latency content. So why isn’t this the case? One factor could be the simple, developer-oriented approach of DigitalOcean, which can be beneficial for somebody who knows how to do everything by hand, but the benefits of using a big multi-service Cloud-Provider like Google or Amazon are something you also pay for: being able to interconnect services, easy application-level management, auto-respawning of faulty machines and overall an easier management among many other interoperable options need to be taken into account… especially if you have a relatively complex machinery to operate.


You could mount a very complex network in DigitalOcean as well, but you would need to configure everything by yourself and management ends up being more tedious. In that sense, depending on your budget, sometimes paying less on one side can result in higher operational costs. Please take into account that we are actually comparing a VPS solution against complete Cloud service providers.


On the other side, DigitalOcean is an example of how the Cloud is becoming more and more affordable, to the point where it competes against traditional web-hosting prices and still delivers high performance. You can literally have a new server up and running in less than a minute and maybe 5 minutes if you’re new to it. Since there isn’t much to fiddle around, this very straightforward and simple approach will spawn you one or more new servers instantly, with public ip-addresses and pre-installed keys to log in remotely by ssh. Starting from $5 a month for a basic VM running on the Cloud.


Even if you already use another Cloud provider to run your machines, trying this out won’t hurt at all. Hooking up a CDN to it is very simple and even IF you need it. Since the high performance of the service itself is already on-par with CDNs, you can think it twice if it’s truly beneficial to use one.


This is a point we would like to stress: a CDN by itself may or may not accelerate a service. The decision of which CDN to use and whether it fits your own user distribution is a complex question which requires a well researched individual answer for each case. Having stated that CDN isn’t synonyms with “higher speed”, we woud like to ask again: why isn’t this option more popular? Maybe is it the already established usage of a Cloud platform, which makes it convenient to just spawn a machine and control everything from the same place. Maybe adopting another provider is too much extra papework, or maybe the public simply isn’t aware of this.


Let’s take a look at the following comparisons, where CloudPerf measured DigitalOcean against multiple CDNs in the UK:

DOvsCDN-httpget UK

If we compare DigitalOcean’s (here labeled as “Origin”) performance in the UK directly against CDNs we will find that it is at least on-par with most of them.

DOvsCDN pageload all

And if we filter out most of them and take a look to the CDNs performing the closest:

DOvsCDN less

We find that it performs even better than Highwinds and Skypark. With CloudFlare and CloudFront performing with better averages.

DOvsCDN pageload less

So, looking at the example we showed here, if you have your audience near any DigitalOcean location, then you’re probably not going to need a CDN to speed up you service. Nevertheless, depending on what solution you adopt, you could benefit from other features of CDNs, like added SSL security and easy escalability without having to resize machines in many cases.


When we compare prices, the picture gets even more interesting. Let’s take DigitalOcean’s $20/month package: you get 3TB of data transfer included and a generous VM. That’s $0.03 per hour and $0.0067 per GB together in one price. A similar configuration in GCP will cost approx. $28.08 only for having the VM and ~$460.8 for 3 TB of traffic, that makes ~$488,88 a month. In AWS a similar config would cost ca. ~$40.32 for the VM and ~$476.16 for 3 TB of traffic, that’s ~$516.48. So DigitalOcean with $20 a month will give you an equivalent of ~$500 investment in other platforms.


What about the bigger VMs? The biggest plan DigitalOcean offers is $640 a month for a very capable machine and 9TB data transfer included. An similar setup in GCP will cost ~$449.28 ($0.624/hr) plus $1024 for 9TB of traffic giving a total of $1473.28. In AWS you can either choose a $0.528/hr which is a less capable machine but similar in price or $1.056/hr for a more similar one to the ones used in the competition. 9TB of data transfer will cost $1428.48 and running the VMs will cost either $380.16/month or $760.32/month, giving a total of ~$1808.64 for the smaller machine or ~$2188.8 for the bigger one. In any case expect to pay around $2000 a month. All that without CDN. To make things simpler, if we assume an approximate price of $0.1 per GB in a CDN, we find that you have to put $300 or $900 on top of your already existing hosting costs for accelerating those 3TB or 9TB of data respectively.


Please take into account that these figures are an approximate calculation since, as you may very well know, pricing in Cloud services and CDNs is extremely dependant on what resources, how and when were they used. In that sense, this also favours DigitalOcean in giving you a clear and straightforward fixed pricing structure.


Summing up, we have seen that a simple Cloud VPS provider like DigitalOcean can achieve very low latencies locally in the UK. We compared its performance and pricing against Google Cloud and Amazon S3. We saw that DigitalOcean generally performs better than both. Then, comparing DigitalOcean’s performance against CDNs serving the same content, CloudPerf reported that the VPS by itself is fast enough in the UK to compete head to head against CDNs. In this perspective, we can only recommend to analyse and think twice what kind of solution you need to adopt. For that matter, making an informed decision without measurements sounds indeed contradictory. Using our tool CloudPerf, we discovered particular circumstances where a large very important location like the UK can be covered simply using a modern high-performance Cloud VPS service.


Do you want to discover your best options yourself using CloudPerf? Sign up now!

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail

Google CDN Beta is here… and it’s already one of the fastest CDNs out there!

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail

servers-cloud-600x450
Some months ago, Google launched their Alpha program for their upcoming CDN service. We kept a close eye to their development and in the meanwhile, in NEXT 2016 Google has already announced the Beta phase of their CDN. We already discussed how this new product will fit in the broad palette of content distribution solutions Google has implemented. We have seen Google Global Cache, which is primarily aimed at speeding up their own services at ISP level, with more than 800 caches installed globally. CDN Interconnect is their partner program with third party providers like Cloudflare, Level3, Akamai, Highwinds, Fastly and Verizon, allowing them to use Google’s backbone network to transport content faster than ever from the source to practically anywhere where it is required, powering up CDNs not only with faster caching, but also enabling them to deliver rapidly changing content at top speeds.

Cloud CDN is Google’s own CDN solution for sites running in VMs inside Compute Engine. It is designed and implemented a bit differently from other CDNs, since it is meant to cache not only static content, but practically a whole site in more than 50 edge caches globally. It is a whole new take in the concept of CDNs, going way further than simply caching files, since it is directly integrated into their Load Balancing system and it literally means that a copy of your site will be running and serving from the closest location to your customers, with a single public IP address thanks to Anycast. In addition to HTTP/1.0 and 1.1 it also supports the new HTTP/2 protocol as well as free HTTPS, putting your site at the edge of current Web technology.


basic-edge-cache

Using our tool CloudPerf, we were able to try out and see how well it performs compared to other CDN providers, including some of their Interconnect partners. We have four exact copies of our test VM in Google Compute Engine running in different locations worldwide. Since Cloud CDN is designed to run in front of a whole site, instead of only caching static objects, we designed a simple 100kB page to test this system at its best capabilities. CloudPerf uses a real instance of Chrome to load the whole page and measure the time it takes to visualize the content in a real web browser, measuring as always from the last mile, where real users are.


Please consider that CloudPerf‘s Page Load test, by using a real instance of Chrome requires a cold start of the browser instance and includes DNS resolution times. That means that at this moment the measurements using this method will have an overhead of +/-600ms added to the real measurement time. The relative measured times between all destinations are correct since all of them are made with the same probe, but the absolute measured times include the above mentioned overhead.


Now let’s see what happens with the 100kB Page Load test in a selection* of worldwide countries.


World Pageload graph
The average measured times by country and CDN can be seen in the following table:
World Pageload table
We can clearly see that Google Cloud CDN outperforms all other CDNs in loading a whole page in most countries. We can have a look at the special case of Japan, which shows the lowest measured times, by simply filtering results in CloudPerf.
Screen Shot 2016-04-15 at 16.13.36


Going further, if we take a look at a selection of european countries**, we observe a similar situation only with Cloudfront, Level3 and Akamai coming a lot closer to Google’s performance.
PageLoad Europe

Now, in the USA the battle is fierce, although higher than Japan, the overall loading times of most CDNs are very close to each other and the general performance is really good, except for MaxCDN, which in our measurements got a little behind the rest, but still performing reasonably well in comparison to other regions. Nevertheless, it is evident that CDNs strive for top performance especially in the US market.
USA Pageload graph

How does Google achieve such top loading times practically everywhere? We think that this is precisely due to the fact that Google CDN is embedded in the Load Balancing system of Compute Engine and that means that you can configure your site to automatically replicate your VMs whenever it is necessary to a location closest to your users, meaning an overall higher response time and effectively shortening loading times.There is a very noticeable difference when we include into the equation the time it takes to load and resolve all objects of a page from a single location close to the user, as opposed to other CDNs where only traditionally cacheable content gets copied and the rest has to be retrieved from the origin.


PS: You can make your own comparisons and performance tests using CloudPerf.Sign up now!



* Australia, Brazil, France, Germany, India, Japan, Russia, Singapore, South Africa, Turkey, United Kingdom and United States

** France, Germany, Italy, Netherlands, Norway, Poland, Romania, Spain, Sweden and United Kingdom.

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail

Surprise! Google CDN Alpha already outperforming competitors in Europe

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail

Google-cloud-services

During the last couple of years, Google has been undergoing massive structural transformations: first they shut down their PageSpeed Service which was their own take into the CDN world until August this year. In exchange of that, they launched CDN Interconnect, a program where Google joined forces with other CDN providers like Cloudflare, Fastly, Level3, Highwinds and lastly Akamai, opening the doors to those partner CDNs to serve content originated from Google Cloud Platform and profiting from using the giant’s Backbone Network. On top of that, Google has been quite successful in building their impressive Global Cache for speeding up their own services by directly installing caches on ISPs. In a previous post we found out more than 800 cache locations worldwide.

The Alpha Release of Google Cloud CDN was interpreted by the press as competition with their own partners from CDN Interconnect. We looked closer and discussed our first impressions in our previous post. Now it’s time to look inside this new service and see what it has to offer. We looked at our results with skepticism at first, but after looking closer at them, we could recognize the gestation of what could be the new wunderkind among CDNs.





Since the current release state of Cloud CDN is Alpha, you can only use it by invitation. In our case, we requested access and it was granted only 2 days later.

Cloud CDN is built within Compute Engine, which is their Cloud Service for creating and running Virtual Machines (VMs). This service features elasticity options for responding to changing traffic conditions, such as replicated instances and Load Balancing. This is where Cloud CDN comes into play: as part of a load-balancing configuration.

According to its own documentation:

” Google Cloud CDN (Content Delivery Network) uses Google’s globally distributed edge caches to cache HTTP(S) Load Balanced content close to your users. Caching content at the edges of Google’s network provides faster delivery of content to your users while reducing the load on your servers.”

The charges for using this service are based on the pricing for Load Balancing and Protocol Forwarding. On top of the hourly charges for using the first 5 Forwarding Rules of $0.025/hour, the cost per processed GB is $0.008/GB. On top of these costs, consider the standard Internet Egress rates you have to pay for delivering your content, which ranges from $0.08/GB to $0.23/GB depending on the region and monthly usage. Heavier users profit from cheaper rates. Neverhteless, this is not a particularly cheap solution, as we can find more affordable CDNs, you can take a look at this comparison.

If you already have a backend service running in a VM in Compute Engine, activating Cloud CDN after registration requires only one command. In case you don’t have a load-balanced backend service running you can take a look at our quick tutorial for setting it up. This will spare you some time of reading through many different pages of documentation.

We ran 48 hours of continuous performance monitoring using our tool Cloudperf, with a total of 33600 single last-mile measurements for each test. We can see that in terms of throughput, Google CDN doesn’t perform especially well in comparison with other CDNs.

Throughput
Throughput Table
But if we look at our measurements in Europe… Surprise! Amazingly low latencies!

Latency EU - GraphLatency EU - Table
Our Thoughput measurments confirm that the young Cloud CDN is already giving top performance in Europe! This is a very clear sign on where Cloud CDN shows competitive advantages, should you decide to use it on its current state. If you’re interested in speeding up your services in Europe, this CDN is already a viable solution.

On the other hand, in the US we could observe a notoriously high latency and not very fast download speeds.

Latency US by ISP - Graph
These results may surprise us at first, but we have to remember that this CDN service is still in Alpha stage, which means that it can still be radically altered during its development. According to the current documentation (December 2015), content is cached only in a small subset of POPs during this stage; the full POP usage will be available later on. Also the cacheable file size is currently limited to 4MB. Caching larger files will have to wait for a further release.


In the next table we can compare the latencies achieved in the US on different ISPs.

Latency US by ISP - Table
In other countries the latency tests didn’t show much better results except for european countries, where it performed notably well.

Latency G20 - GraphLatency G20 - Table

From the current state of development, we have observed that Google Cloud CDN isn’t going full speed yet. It is evident that it’s in fact an Alpha release. Nevertheless, looking at their performance in Europe, we can definitely see its immediate utility in multi-CDN scenarios, where customers demanding fine tuned performance can use Google CDN in Europe while using different CDNs in other regions.

How does this fit between CDN Interconnect and Global Cache? Technically speaking, we can see that Cloud CDN is built upon the Load Balancing system for their Cloud Backend Services. With that in mind, we can consider this a hand-cut CDN solution designed especially for Google’s own cloud services. On the other hand, Global Cache accelerates mainstream Google services at an ISP level, while CDN Interconnect allows partner third party CDNs to cache and serve content stored in Google Servers much faster.

All this helps us visualize an impressive caching infrastructure Google is extending to keep his place in today’s and tomorrow’s very competitive Internet. Even in an Alpha release which reasonably showed mediocre results for the most part, we know this is to be expected and should radically change after its final release. Of course Google knows this…after all, being and staying an Internet giant isn’t easy!




PS: You can make your own comparisons and performance tests using CloudPerf. Sign up now!

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail